Kurzus nemzetközi vendég- és részidős hallgatóknak

Kar
Informatikai Kar
Szervezet
IK-SEK Savaria Műszaki Intézet
Kód
SBANGP202114EN
Cím
Structure of Materials
Tervezett félév
Tavaszi
Meghirdetve
2024/25/2
ECTS
5
Nyelv
en
Leírás
The  course  deals  with  the  basic  structure  of  various  materials  (metals,  ceramics,  polymers, composites)  and  mathematical  description  of  materials  building  units.  Structure properties relationship is discussed.  Particularly:  Atomic structure of materials, single and poly crystals, isotropic and anisotropic materials, mathematical description of crystal structure.  Diffusion and imperfections in materials. Deformation mechanisms in materials. Metallic materials: mechanical properties, strengthening and recovery mechanisms.  Fracture and fracture mechanics.  Structure and properties of ceramics. Structure and properties of polymers. Composites.
Oktatás célja
The  course  deals  with  the  basic  structure  of  various  materials  (metals,  ceramics,  polymers, composites)  and  mathematical  description  of  materials  building  units.  Structure properties relationship is discussed.  Particularly:  Atomic structure of materials, single and poly crystals, isotropic and anisotropic materials, mathematical description of crystal structure.  Diffusion and imperfections in materials. Deformation mechanisms in materials. Metallic materials: mechanical properties, strengthening and recovery mechanisms.  Fracture and fracture mechanics.  Structure and properties of ceramics. Structure and properties of polymers. Composites.
Tantárgy tartalma
Learning Objectives; Historical Perspective; Materials Science and Engineering; Why Study Materials Science and Engineering; Classification of Materials; Selected Properties of Materials. Atomic structure; Periodic Table; Bonding Forces; Type of Bonding Structure-properties paradigm; fundamental concepts of crystal structure; unit cells; different crystal structures; density computations; polymorphism and allotropy; crystal systems. Point Coordinates; Crystallographic Directions; Crystallographic Planes; Linear and Planar Densities. Single crystals; polycrystalline materials; anisotropy; noncrystalline solids Point defects; vacancies and self-interstitials; impurities in solids; specification of composition; linear defects; interfacial defects; bulk or volume defects; atomic vibrations. Learning objectives; diffusion mechanisms; steady-state diffusion; non steady-state diffusion; factors that influence diffusion Stress-strain behavior; anelasticity; elastic properties of materials; tensile properties; true stress and strain; elastic recovery after plastic deformation; compressive, shear, and torsional deformation; hardness. Basic concepts of plastic deformation; characteristics of dislocations; slip systems; slip in; single crystals; plastic deformation of polycrystalline materials; deformation by twinning, strengthening by grain size control; solid-solution strengthening; strain hardening; recovery; recrystallization; grain growth. Fundamentals of fracture; ductile fracture; brittle fracture; principles of fracture mechanics; impact fracture testing; fatigue; cyclic stresses; the s-n curve; crack initiation and propagation; factors that affect fatigue life; generalized creep behavior; stress and temperature effects; data extrapolation methods; alloys for high-temperature. Ceramic structures; crystal structures; silicate ceramics; carbon; imperfections in ceramics; diffusion in ionic materials. Mechanical properties; brittle fracture of ceramics; stress-strain behavior; mechanisms of plastic deformation. types and applications of ceramics; glasses; glass-ceramics; clay products; Refractories; abrasives; cements; advanced ceramics. Polymer types; plastics; elastomers; fibers; advanced polymeric materials. hydrocarbon molecules; polymer molecules; the chemistry of polymer molecules; copolymers; polymer crystallinity; polymer crystals; defects in polymers; diffusion in polymeric materials. Mechanical behavior of polymers; macroscopic deformation; viscoelastic deformation; fracture of polymers. Mechanisms of deformation and strengthening of polymers. Particle-reinforced composites; large-particle composites; dispersion-strengthened composites. fiber-reinforced composites; influence of fiber length; influence of fiber orientation and concentration; the fiber phase; the matrix phase; polymer-matrix composites; metal-matrix composites; ceramic-matrix composites; carbon-carbon composites; hybrid composites; processing of fiber-reinforced composites. Structural composites; laminar composites; sandwich panels.
Számonkérés és értékelés
1. Attendance on lectures and practices (maximum 3 absences are allowed). 2. Tests. 3. Course point value in the semester is 50 points. To accomplish the semester and get a possibility to the final exam is needed to acquire at least 25 points (50%). Points can be obtained as follows: a) Tests:           2x25 points       (50) The final grade is determined based on the following method: each of the two midterm accounts 50% of the overall score. The grades are determined with the following scale:                  87 – 100 %              excellent (5)                  75 – 86 %                good (4)                  63 – 74 %                satisfactory (3)                  50 – 62 %                pass (2)             0 – 49 %           fail (1)
Irodalomjegyzék
W. D. Callister and D. G. Rethwisch (2013): Fundamentals of materials science and engineering (John Wiley & Sons. Singapore.) B.  S.  Mitchel (2004): An  introduction  to  materials  engineering  and  science (John Wiley & Sons. New Jersey, USA)

Kurzus szakjai

Név (kód) Nyelv Szint Kötelező Tanév ...
Erasmus program keretében (IK-ERASMUS-NXXX) en Kötelező
gépészmérnöki (IK-SEK-SANB-GP-NBEN) hu 6 Kötelező 1/4
Vissza